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Introduction and Motivation

" |dentifying the key factors driving disease propagation is paramount in
reducing fatalities and addressing broader societal impacts.

" Infectious disease transmission is characterized by complex nonlinear
dynamics making the analysis using conventional methods challenging.

" Integration of traditional modeling approaches in epidemiology with
modern machine learning techniques can effectively identify the key
factors influencing the outcomes of infectious disease transmission.

Research Objectives

This goal is comprised of three tasks:

" Develop models of transmission that account for multiple viral strains,
multiple vaccines, vaccine preferences.

" Create novel architectures of Al-enabled algorithms that can learn the
fundamental nonlinear dynamic features of outbreaks.

" Develop methods to identify what features of the trained algorithms
from task 3 most impact disease outcomes.

Approach — Problem Formulation

" A multi-strain-vaccine disease dynamics model has been developed.

" Disease propagation starts with the first variant, and mutation in the
variant occur and results in new variants of concern.

" We have integrated all vaccine-related components, such as the
introduction date, lead time, and efficacy.
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Approach — Explainable Al

= XAl algorithms specifically designed to provide human interpretability
for complex decision making.

" A neural network algorithm is trained on the synthetic data generated
from the multi-strain-vaccine model.

» SHAP (SHapley Additive exPlanations) algorithm within XAl is considered
to analyze the important features contributing to an increased number of

fatalities during a pandemic.
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" The factors that have the greatest impact on the fatality rate during a 5-year
simulation of disease dynamics are identified.
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Conclusions

= An Al-enabled algorithm combined with compartmental modeling
methods is proposed to detect the features that affect disease
outcomes the most

* The parameters that affect the disease outcome depend on the
current state of a pandemic, and might vary as time evolves

" The analysis results will guide health officials in prioritizing actions
and policies to prevent disease transmission consequences.



