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Abstract Results

Behavioral feedbacks aftect the transmission of infectious diseases. During outbreaks, various We examined the effect of policy strength on infection dynamics, using fixed policy P, We conducted sensitivity analysis to explore the sensitivity of outbreak size (cumulative infections) to
non-pharmaceutical interventions (NPIs) such as mask-wearing and social distancing may be fixed parameters of ¢ (P) and Latin hypercube sampling of epidemiological and behavioral behavioral parameters « and initial fraction of population in the susceptible compliant class §_(Figs 5 & 6).
effective in reducing the spread of infectious diseases, but not all members of a population may parameters (Fig 3). We also studied the effect of policy strength on peak prevalence and time
comply with public policies (Eikenberry ef al. 2020, Ferguson et al. 2020). to extinction, indicators of infectiousness and disease persistence, respectively (Fig 4) 6 DEPENDENCE OF OUTBREAK SIZE ON BEHAVIOR

Allen 2008, Barbour 1975).
Therefore, the coupling between changing behaviors and disease dynamics may be important ( ) peer oo of cceptanes Dependence of outbreak size (cumulative infections) on behavioral

for anticipating the eftfectiveness of public policies. We developed a compartmental model to

EFFECT OF POLICY STRENGTH ON

parameters a and initial compliant susceptible fraction. Sensitivity

understand the contemporaneous spread of disease within a population comprising compliant analvsis. with poli _ -
_ . ysis, with policy strength fixed at P = 0.3. Behavioral and
and non-compliant groups (Figs 1 & 2). INFECTION DYNAMICS we epidemiological parameters and initial conditions were drawn from Latin
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